

8 Virtual Machine II: Program Control

If everything seems under control, you’re just not going fast enough.

—Mario Andretti (b. 1940), race car champion

Chapter 7 introduced the notion of a virtual machine (VM) and ended with the

construction of a basic VM implementation over the Hack platform. In this chapter

we continue to develop the VM abstraction, language, and implementation. In par-

ticular, we design stack-based mechanisms for handling nested subroutine calls (pro-

cedures, functions, methods) of procedural or object-oriented languages. As the

chapter progresses, we extend the previously built basic VM implementation, end-

ing with a full-scale VM translator. This translator will serve as the backend of the

compiler that we will build in chapters 10 and 11, following the introduction of a

high-level object-based language in chapter 9.

In any Great Gems in Computer Science contest, stack processing will be a strong

finalist. The previous chapter showed how arithmetic and Boolean expressions can

be calculated by elementary stack operations. This chapter goes on to show how this

remarkably simple data structure can also support remarkably complex tasks like

nested subroutine calling, parameter passing, recursion, and the associated memory

allocation techniques. Most programmers tend to take these capabilities for granted,

expecting the compiler to deliver them, one way or another. We are now in a position

to open this black box and see how these fundamental programming mechanisms are

actually implemented by a stack-based virtual machine.

8.1 Background

High-level languages allow writing programs in high-level terms. For example,

x ¼ �bþ
ffi
b2 � 4 � a � c

p
can be expressed as x=-b+sqrt(power(b,2)-4*a*c),

which is almost as descriptive as the real thing. High-level languages support this

power of expression through three conventions. First, one is allowed to freely define

high-level operations like sqrt and power, as needed. Second, one is allowed to

freely use (call) these subroutines as if they were elementary operations like + and *.

Third, one is allowed to assume that each called subroutine will get executed—

somehow—and that following its termination control will return—somehow—to the

next command in one’s code. Flow of control commands take this freedom one step

further, allowing writing, say, if ~(a=0) {x=(-b+sqrt(power(b,2)-4*a*c))/

(2*a)} else {x=-c/b}.

The ability to compose such expressions freely permits us to write abstract code,

closer to the world of algorithmic thought than to that of machine execution. Of

course the more abstract the high level, the more work we have to do at the low level.

In particular, the low level must manage the delicate interplay between the calling

subroutine (the caller) and the called subroutines—the program units that implement

system- and user-defined operations like sqrt and power. For each subroutine call

during runtime, the low level must handle the following details behind the scene:

m Passing parameters from the caller to the called subroutine

m Saving the state of the caller before switching to execute the called subroutine

m Allocating space for the local variables of the called subroutine

m Jumping to execute the called subroutine

m Returning values from the called subroutine back to the caller

m Recycling the memory space occupied by the called subroutine, when it returns

m Reinstating the state of the caller

m Jumping to execute the code of the caller immediately following the spot where

we left it

Taking care of these housekeeping chores is a major headache, and high-level

programmers are fortunate that the compiler relieves them from this duty. So how

does the compiler do it? Well, if we choose to base our low level implementation on a

stack machine, the job will be surprisingly manageable. In fact, the stack structure

lends itself perfectly well to supporting all the housekeeping tasks mentioned above.

With that in mind, the remainder of this section describes how program flow and

subroutine calling commands can be implemented on a stack machine. We begin with

the implementation of program flow commands, which is rather simple and requires

no memory management, and continue to describe the more challenging implemen-

tation of subroutine calling commands.

154 Chapter 8

8.1.1 Program Flow

The default execution of computer programs is linear, one command after the other.

This sequential flow is occasionally broken by branching commands, for example,

embarking on a new iteration in a loop. In low-level programming, the branching

logic is accomplished by instructing the machine to continue execution at some des-

tination in the program other than the next instruction, using a goto destination

command. The destination specification can take several forms, the most primitive

being the physical address of the instruction that should be executed next. A slightly

more abstract redirection command is established by describing the jump destination

using a symbolic label. This variation requires that the language be equipped with

some labeling directive, designed to assign symbols to selected points in the code.

This basic goto mechanism can easily be altered to effect conditional branching

as well. For example, an if-goto destination command can instruct the machine to

take the jump only if a given Boolean condition is true; if the condition is false, the

regular program flow should continue, executing the next command in the code.

How should we introduce the Boolean condition into the language? In a stack ma-

chine paradigm, the most natural approach is conditioning the jump on the value of

the stack’s topmost element: if it’s not zero, jump to the specified destination; other-

wise, execute the next command in the program.

In chapter 7 we saw how primitive VM operations can be used to compute

any Boolean expression, leaving its truth-value at the stack’s topmost element. This

power of expression, combined with the goto and if-goto commands just described,

can be used to express any flow of control structure found in any programming lan-

guage. Two typical examples appear in figure 8.1.

The low-level implementation of the VM commands label, goto label, and if-goto

label is straightforward. All programming languages, including the ‘‘lowest’’ ones,

feature branching commands of some sort. For example, if our low-level implemen-

tation is based on translating the VM commands into assembly code, all we have

to do is reexpress these goto commands using the branching logic of the assembly

language.

8.1.2 Subroutine Calling

Each programming language is characterized by a fixed set of built-in com-

mands. The key abstraction mechanism provided by modern languages is the

freedom to extend this basic repertoire with high-level, programmer-defined oper-

ations. In procedural languages, the high-level operations are called subroutines,

155 Virtual Machine II: Program Control

procedures, or functions, and in object-oriented languages they are usually called

methods. Throughout this chapter, all these high-level program units are referred to

as subroutines.

In well-designed programming languages, the use of a high-level operation

(implemented by a subroutine) has the same ‘‘look and feel’’ as that of built-in com-

mands. For example, consider the functions add and raise to a power. Most lan-

guages feature the former as a built-in operation, while the latter may be written as a

subroutine. In spite of these different implementations, both functions should ideally

look alike from the caller’s perspective. This would allow the caller to weave the two

operations together naturally, yielding consistent and readable code. A stack lan-

guage implementation of this principle is illustrated in figure 8.2.

We see that the only difference between invoking a built-in command and calling a

user-defined subroutine is the keyword call preceding the latter. Everything else is

exactly the same: Both operations require the caller to set up their arguments, both

operations are expected to remove their arguments from the stack, and both operations

are expected to return a value which becomes the topmost stack element. The unifor-

mity of this protocol has a subtle elegance that, we hope, is not lost on the reader.

Flow of control structure Pseudo VM code

if (cond)

s1

else

s2

...

VM code for computing ~(cond)

if-goto L1

VM code for executing s1

goto L2

label L1

VM code for executing s2

label L2

...

while (cond)

s1

...

label L1

VM code for computing ~(cond)

if-goto L2

VM code for executing s1

goto L1

label L2

...

Figure 8.1 Low-level flow of control using goto commands.

156 Chapter 8

Subroutines like power usually use local variables for temporary storage. These

local variables must be represented in memory during the subroutine’s lifetime,

namely, from the point the subroutine starts executing until a return command

is encountered. At this point, the memory space occupied by the subroutine’s local

variables can be freed. This scheme is complicated by allowing subroutines to be

arbitrarily nested: One subroutine may call another subroutine, which may then call

another one, and so on. Further, subroutines should be allowed to call themselves

recursively; each recursive call must be executed independently of all the other calls

and maintain its own set of local and argument variables. How can we implement

this nesting mechanism and the memory management tasks implied by it?

The property that makes this housekeeping task tractable is the hierarchical nature

of the call-and-return logic. Although the subroutine calling chain may be arbitrarily

deep as well as recursive, at any given point in time only one subroutine executes at

the top of the chain, while all the other subroutines down the calling chain are wait-

ing for it to terminate. This Last-In-First-Out (LIFO) processing model lends itself

perfectly well to a stack data structure, which is also LIFO. When subroutine xxx

calls subroutine yyy, we can push (save) xxx’s world on the stack and branch to

execute yyy. When yyy returns, we can pop (reinstate) xxx’s world off the stack, and

continue executing xxx as if nothing happened. This execution model is illustrated in

figure 8.3.

We use the term frame to refer, conceptually, to the subroutine’s local variables,

the arguments on which it operates, its working stack, and the other memory seg-

ments that support its operation. In chapter 7, the term stack referred to the working

memory that supports operations like pop, push, add, and so on. From now on, when

we say stack we mean global stack—the memory area containing the frames of the

// x+2

push x

push 2

add

...

// x^3

push x

push 3

call power

...

// (x^3+2)^y

push x

push 3

call power

push 2

add

push y

call power

...

// Power function

// result = first arg

// raised to the power

// of the second arg.

function power

// code omitted

push result

return

Figure 8.2 Subroutine calling. Elementary commands (like add) and high-level operations
(like power) have the same look and feel in terms of argument handling and return values.

157 Virtual Machine II: Program Control

current subroutine and all the subroutines waiting for it to return. These two stack

notions are closely related, since the working stack of the current subroutine is

located at the very tip of the global stack.

To recap, the low-level implementation of the call xxx operation entails saving

the caller’s frame on the stack, allocating stack space for the local variables of the

called subroutine (xxx), then jumping to execute its code. This last ‘‘mega jump’’ is

not hard to implement. Since the name of the target subroutine is specified in the

call command, the implementation can resolve the symbolic name to a memory

address, then jump to execute the code starting at that address. Returning from the

called subroutine via a return command is trickier, since the command specifies

no return address. Indeed, the caller’s anonymity is inherent in the very notion of a

subroutine call. For example, subroutines like power(x,y) or sqrt(x) are designed

to serve any caller, implying that the return address cannot be part of their code.

Instead, a return command should be interpreted as follows: Redirect the pro-

gram’s execution to the command following the call command that called the

current subroutine, wherever this command may be. The memory location of this

command is called return address.

Code: Flow:
Stack state:

a frame
b frame
c frame

a frame
c frame

a frame
b frame
d frame

d frame

subroutine a:

call b

call c

...

subroutine b:

call c

call d

...

subroutine c:

call d

...

subroutine d:

...

start a

start b

start c

start d

end d

end c

start d

end d

end b

start c

start d

end d

end c

end a

Figure 8.3 Subroutine calls and stack states associated with three representative points in the
program’s life cycle. All the layers in the stack are waiting for the current layer to complete
its execution, at which point the stack becomes shorter and execution resumes at the level just
below the current layer. (Following convention, the stack is drawn as if it grows downward.)

158 Chapter 8

A glance at figure 8.3 suggests a stack-based solution to implementing this return

logic. When we encounter a call xxx operation, we know exactly what the return

address should be: It’s the address of the next command in the caller’s code. Thus,

we can push this return address on the stack and proceed to execute the code of the

called subroutine. When we later encounter a return command, we can pop the

saved return address and simply goto it. In other words, the return address can also

be placed in the caller’s frame.

8.2 VM Specification, Part II

This section extends the basic VM specification from chapter 7 with program flow

and function calling commands, thereby completing the overall VM specification.

8.2.1 Program Flow Commands

The VM language features three program flow commands:

m label label This command labels the current location in the function’s code.

Only labeled locations can be jumped to from other parts of the program. The scope

of the label is the function in which it is defined. The label is an arbitrary string

composed of any sequence of letters, digits, underscore (_), dot (.), and colon (:) that

does not begin with a digit.

m goto label This command effects an unconditional goto operation, causing exe-

cution to continue from the location marked by the label. The jump destination must

be located in the same function.

m if-goto label This command effects a conditional goto operation. The stack’s

topmost value is popped; if the value is not zero, execution continues from the loca-

tion marked by the label; otherwise, execution continues from the next command in

the program. The jump destination must be located in the same function.

8.2.2 Function Calling Commands

Different high-level languages have different names for program units including

functions, procedures, methods, and subroutines. In our overall compilation model

(elaborated in chapters 10–11), each such high-level program unit is translated into

a low-level program unit called VM function, or simply function.

159 Virtual Machine II: Program Control

A function has a symbolic name that is used globally to call it. The function name

is an arbitrary string composed of any sequence of letters, digits, underscore (_), dot

(.), and colon (:) that does not begin with a digit. (We expect that a method bar

in class Foo in some high-level language will be translated by the compiler to a VM

function named Foo.bar). The scope of the function name is global: All functions in

all files are seen by each other and may call each other using the function name.

The VM language features three function-related commands:

m function f n Here starts the code of a function named f that has n local

variables;

m call f m Call function f , stating that m arguments have already been pushed

onto the stack by the caller;

m return Return to the calling function.

8.2.3 The Function Calling Protocol

The events of calling a function and returning from a function can be viewed from

two different perspectives: that of the calling function and that of the called function.

The calling function view: The called function view:

m Before calling the function, the

caller must push as many arguments

as necessary onto the stack;

m Next, the caller invokes the

function using the call command;

m After the called function returns,

the arguments that the caller has

pushed before the call have

disappeared from the stack, and a

return value (that always exists)

appears at the top of the stack;

m After the called function returns,

the caller’s memory segments

argument, local, static, this,

that, and pointer are the same as

before the call, and the temp segment

is undefined.

m When the called function starts

executing, its argument segment has

been initialized with actual argument

values passed by the caller and its

local variables segment has been

allocated and initialized to zeros. The

static segment that the called

function sees has been set to the

static segment of the VM file to

which it belongs, and the working

stack that it sees is empty. The

segments this, that, pointer, and

temp are undefined upon entry.

m Before returning, the called

function must push a value onto the

stack.

160 Chapter 8

To repeat an observation made in the previous chapter, we see that when a VM

function starts running (or resumes its previous execution), it assumes that it is sur-

rounded by a private world, all of its own, consisting of its memory segments and

stack, waiting to be manipulated by its commands. The agent responsible for build-

ing this virtual worldview for every VM function is the VM implementation, as we

elaborate in section 8.3.

8.2.4 Initialization

A VM program is a collection of related VM functions, typically resulting from the

compilation of some high-level program. When the VM implementation starts run-

ning (or is reset), the convention is that it always executes an argument-less VM

function called Sys.init. Typically, this function then calls the main function in

the user’s program. Thus, compilers that generate VM code must ensure that each

translated program will have one such Sys.init function.

8.3 Implementation

This section describes how to complete the VM implementation that we started

building in chapter 7, leading to a full-scale virtual machine implementation. Sec-

tion 8.3.1 describes the stack structure that must be maintained, along with its stan-

dard mapping over the Hack platform. Section 8.3.2 gives an example, and section

8.3.3 provides design suggestions and a proposed API for actually building the VM

implementation.

Some of the implementation details are rather technical, and dwelling on them

may distract attention from the overall VM operation. This big picture is restored in

section 8.3.2, which illustrates the VM implementation in action. Therefore, one may

want to consult 8.3.2 for motivation while reading 8.3.1.

8.3.1 Standard VM Mapping on the Hack Platform, Part II

The Global Stack The memory resources of the VM are implemented by maintain-

ing a global stack. Each time a function is called, a new block is added to the global

stack. The block consists of the arguments that were set for the called function, a set

of pointers used to save the state of the calling function, the local variables of the

called function (initialized to 0), and an empty working stack for the called function.

Figure 8.4 shows this generic stack structure.

161 Virtual Machine II: Program Control

Note that the shaded areas in figure 8.4 as well as the ARG, LCL, and SP pointers

are never seen by VM functions. Rather, they are used by the VM implementation to

implement the function call-and-return protocol behind the scene.

How can we implement this model on the Hack platform? Recall that the standard

mapping specifies that the stack should start at RAM address 256, meaning that the

VM implementation can start by generating assembly code that sets SP=256. From

this point onward, when the VM implementation encounters commands like pop,

push, add, and so forth, it can emit assembly code that effects these operations by

manipulating SP and relevant words in the host RAM. All this was already done in

argument n–1

ARG

saved state of the calling
function, used to return
to and restore the
segments of, the calling
function upon returning
from the current function

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k–1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

working stack of the
current function

local variables of the
current function

arguments pushed for
the current function

Figure 8.4 The global stack structure.

162 Chapter 8

chapter 7. Likewise, when the VM implementation encounters commands like call,

function, and return, it can emit assembly code that maintains the stack structure

shown in figure 8.4 on the host RAM. This code is described next.

Function Calling Protocol Implementation The function calling protocol and the

global stack structure implied by it can be implemented on the Hack platform by

effecting (in Hack assembly) the pseudo-code given in figure 8.5.

Recall that the VM implementation is a translator program, written in some high-

level language. It accepts VM code as input and emits assembly code as output.

VM command Generated (pseudo)code emitted by the VM implementation

call f n

(calling a function f

after n arguments

have been pushed

onto the stack)

push return-address // (Using the label declared below)

push LCL // Save LCL of the calling function

push ARG // Save ARG of the calling function

push THIS // Save THIS of the calling function

push THAT // Save THAT of the calling function

ARG = SP-n-5 // Reposition ARG (n ¼ number of args.)

LCL = SP // Reposition LCL

goto f // Transfer control

(return-address) // Declare a label for the return-address

function f k

(declaring a function

f that has k local

variables)

(f) // Declare a label for the function entry

repeat k times: // k ¼ number of local variables

PUSH 0 // Initialize all of them to 0

return

(from a function)

FRAME = LCL // FRAME is a temporary variable

RET = *(FRAME-5) // Put the return-address in a temp. var.

*ARG = pop() // Reposition the return value for the caller

SP = ARG+1 // Restore SP of the caller

THAT = *(FRAME-1) // Restore THAT of the caller

THIS = *(FRAME-2) // Restore THIS of the caller

ARG = *(FRAME-3) // Restore ARG of the caller

LCL = *(FRAME-4) // Restore LCL of the caller

goto RET // Goto return-address (in the caller’s code)

Figure 8.5 VM implementation of function commands. The parenthetical (return address)
and (f) are label declarations, using Hack assembly syntax convention.

163 Virtual Machine II: Program Control

Hence, each pseudo-operation described in the right column of figure 8.5 is actually

implemented by emitting assembly language instructions. Note that some of these

‘‘instructions’’ entail planting label declarations in the generated code stream.

Assembly Language Symbols As we have seen earlier, the implementation of pro-

gram flow and function calling commands requires the VM implementation to create

and use special symbols at the assembly level. These symbols are summarized in

figure 8.6. For completeness of presentation, the first three rows of the table docu-

ment the symbols described and implemented in chapter 7.

Symbol Usage

SP, LCL, ARG,

THIS, THAT

These predefined symbols point, respectively, to the

stack top and to the base addresses of the virtual

segments local, argument, this, and that.

R13-R15 These predefined symbols can be used for any purpose.

Xxx.j Each static variable j in a VM file Xxx.vm is

translated into the assembly symbol Xxx.j. In the

subsequent assembly process, these symbolic variables

will be allocated RAM space by the Hack assembler.

functionName$label Each label b command in a VM function f should

generate a globally unique symbol ‘‘f$b’’ where ‘‘f’’ is

the function name and ‘‘b’’ is the label symbol within

the VM function’s code. When translating goto b and

if-goto b VM commands into the target language,

the full label specification ‘‘f$b’’ must be used instead

of ‘‘b’’.

(FunctionName) Each VM function f should generate a symbol ‘‘f’’

that refers to its entry point in the instruction memory

of the target computer.

return-address Each VM function call should generate and insert into

the translated code stream a unique symbol that serves

as a return address, namely the memory location (in the

target platform’s memory) of the command following

the function call.

Figure 8.6 All the special assembly symbols prescribed by the VM-on-Hack standard
mapping.

164 Chapter 8

Bootstrap Code When applied to a VM program (a collection of one or more .vm

files), the VM-to-Hack translator produces a single .asm file, written in the Hack

assembly language. This file must conform to certain conventions. Specifically, the

standard mapping specifies that (i) the VM stack should be mapped on location

RAM[256] onward, and (ii) the first VM function that starts executing should be

Sys.init (see section 8.2.4).

How can we effect this initialization in the .asm file produced by the VM transla-

tor? Well, when we built the Hack computer hardware in chapter 5, we wired it in

such a way that upon reset, it will fetch and execute the word located in ROM[0].

Thus, the code segment that starts at ROM address 0, called bootstrap code, is the

first thing that gets executed when the computer ‘‘boots up.’’ Therefore, in view of

the previous paragraph, the computer’s bootstrap code should effect the following

operations (in machine language):

SP=256 // Initialize the stack pointer to 0x0100

call Sys.init // Start executing (the translated code of) Sys.init

Sys.init is then expected to call the main function of the main program and then

enter an infinite loop. This action should cause the translated VM program to start

running.

The notions of ‘‘program,’’ ‘‘main program,’’ and ‘‘main function’’ are compila-

tion-specific and vary from one high-level language to another. For example, in the

Jack language, the default is that the first program unit that starts running auto-

matically is the main method of a class named Main. In a similar fashion, when we

tell the JVM to execute a given Java class, say Foo, it looks for, and executes, the

Foo.main method. Each language compiler can effect such ‘‘automatic’’ startup

routines by programming Sys.init appropriately.

8.3.2 Example

The factorial of a positive number n can be computed by the iterative formula

n! ¼ 1 � 2 � . . . � ðn� 1Þ � n. This algorithm is implemented in figure 8.7.

Let us focus on the call mult command highlighted in the fact function code

from figure 8.7. Figure 8.8 shows three stack states related to this call, illustrating the

function calling protocol in action.

If we ignore the middle stack instance in figure 8.8, we observe that fact has set

up some arguments and called mult to operate on them (left stack instance). When

mult returns (right stack instance), the arguments of the called function have been

replaced with the function’s return value. In other words, when the dust clears from

165 Virtual Machine II: Program Control

function p

...

// Compute 4!

push constant 4

call fact 1 // 1 arg

...

function fact 2 // 2 local variables

// Returns the factorial of a given argument

push constant 1

pop local 0 // result=1

push constant 1

pop local 1 // j=1

label loop

push constant 1

push local 1

add

pop local 1 // j=j+1

push local 1

push argument 0

gt

if-goto end // if j>n goto end

push local 0

push local 1

call mult 2 // 2 arguments were pushed

pop local 0 // result=mult(result,j)

goto loop

label end

push local 0

return

function mult 2

// (2 local variables)

// Multiplies argument 0

// times argument 1.

// Code appears in

// figure 7.9.

...

// Return the result:

push local 0

return

2

call fact(4)

call
mult(1,2)

time

fact

p

mult

waiting

call
mult(2,3)

mult

waiting

call
mult(6,4)

mult

waiting

waiting

6 24

24

return return return

return

Figure 8.7 The life cycle of function calls. An arbitrary function p calls function fact, which
then calls mult several times. Vertical arrows depict transfer of control from one function to
another. At any given point in time, only one function is running, while all the functions up
the calling chain are waiting for it to return. When a function returns, the function that called
it resumes its execution.

just before "call mult"

ARG argument 0

return addr

LCL

ARG

THIS (p)

working
stack (fact)

argument 0 (mult)

argument 1 (mult)

local 0 (fact)

local 1 (fact)

LCL

SP

just after mult is entered just after mult returns

THAT (p)

ARG

argument 0

return addr

LCL

ARG

THIS

working
stack

argument 0

argument 1

local 0

local 1

LCL

SP

THAT

return addr

LCL

ARG

THIS

local 0

local 1

THAT

ARG argument 0

return addr

LCL

ARG

THIS

working
stack

return value

local 0

local 1

LCL

SP

THAT

(p)

(p)

(p)

(fact)

(p)

(p)

(p)

(p)

(p)

(fact)

(fact)

(fact)

(fact)

(fact)

(p)

(fact)

(p)

(p)

(p)

(p)

(fact)

(fact)

(fact)

(fact)

(mult)

(mult)

(mult)

(fact)

(fact)

(fact)

(mult)

Figure 8.8 Global stack dynamics corresponding to figure 8.7, focusing on the call mult

event. The pointers SP, ARG, and LCL are not part of the VM abstraction and are used by
the VM implementation to map the stack on the host RAM.

167 Virtual Machine II: Program Control

the function call, the calling function has received the service that it has requested,

and processing resumes as if nothing happened: The drama of mult’s processing

(middle stack instance) has left no trace whatsoever on the stack, except for the

return value.

8.3.3 Design Suggestions for the VM Implementation

The basic VM translator built in Project 7 was based on two modules: parser and

code writer. This translator can be extended into a full-scale VM implementation by

extending these modules with the functionality described here.

The Parser Module If the basic parser that you built in Project 7 does not al-

ready parse the six VM commands specified in this chapter, then add their parsing

now. Specifically, make sure that the commandType method developed in Project 7

also returns the constants corresponding to the six VM commands described in this

chapter: C_LABEL, C_GOTO, C_IF, C_FUNCTION, C_RETURN, and C_CALL.

The CodeWriter Module The basic CodeWriter specified in chapter 7 should be

augmented with the following methods.

CodeWriter: Translates VM commands into Hack assembly code. The routines

listed here should be added to the CodeWriter module API given in chapter 7.

Routine Arguments Returns Function

writeInit — — Writes assembly code

that effects the VM

initialization, also called

bootstrap code. This

code must be placed at

the beginning of the

output file.

writeLabel label (string) — Writes assembly code

that effects the label

command.

writeGoto label (string) — Writes assembly code

that effects the goto

command.

168 Chapter 8

Routine Arguments Returns Function

writeIf label (string) — Writes assembly code

that effects the if-goto

command.

writeCall functionName (string)

numArgs (int)

— Writes assembly code

that effects the call

command.

writeReturn — — Writes assembly code

that effects the return

command.

writeFunction functionName (string)

numLocals (int)

— Writes assembly code

that effects the

function command.

8.4 Perspective

The notions of subroutine calling and program flow are fundamental to all high-level

languages. This means that somewhere down the translation path to binary code,

someone must take care of the intricate housekeeping chores related to their imple-

mentation. In Java, C#, and Jack, this burden falls on the VM level. And if the VM

is stack-based, it lends itself nicely to the job, as we have seen throughout this chap-

ter. In general then, virtual machines that implement subroutine calls and recursion

as a primitive feature deliver a significant and useful abstraction.

Of course this is just one implementation option. Some compilers handle the

details of subroutine calling directly, without using a VM at all. Other compilers use

various forms of VMs, but not necessarily for managing subroutine calling. Finally,

in some architectures most of the subroutine calling functionality is handled directly

by the hardware.

In the next two chapters we will develop a Jack-to-VM compiler. Since the back-

end of this compiler was already developed—it is the VM implementation built in

chapters 7–8—the compiler’s development will be a relatively easy task.

169 Virtual Machine II: Program Control

8.5 Project

Objective Extend the basic VM translator built in Project 7 into a full-scale VM

translator. In particular, add the ability to handle the program flow and function

calling commands of the VM language.

Resources (same as Project 7) You will need two tools: the programming language

in which you will implement your VM translator, and the CPU emulator supplied

with the book. This emulator will allow you to execute the machine code generated

by your VM translator—an indirect way to test the correctness of the latter. Another

tool that may come in handy in this project is the visual VM emulator supplied with

the book. This program allows experimenting with a working VM implementation

before you set out to build one yourself. For more information about this tool, refer

to the VM emulator tutorial.

Contract Write a full-scale VM-to-Hack translator, extending the translator devel-

oped in Project 7, and conforming to the VM Specification, Part II (section 8.2) and

to the Standard VM Mapping on the Hack Platform (section 8.3.1). Use it to trans-

late the VM programs supplied below, yielding corresponding programs written in

the Hack assembly language. When executed on the supplied CPU emulator, these

assembly programs should deliver the results mandated by the supplied test scripts

and compare files.

Testing Programs

We recommend completing the implementation of the translator in two stages. First

implement the program flow commands, then the function calling commands. This

will allow you to unit-test your implementation incrementally, using the test pro-

grams supplied here.

For each program Xxx, the XxxVME.tst script allows running the program on the

supplied VM emulator, so that you can gain familiarity with the program’s intended

operation. After translating the program using your VM translator, the supplied

Xxx.tst and Xxx.cmp scripts allow testing the translated assembly code on the CPU

emulator.

170 Chapter 8

Test Programs for Program Flow Commands

m BasicLoop: computes 1þ 2þ � � � þ n and pushes the result onto the stack.

This program tests the implementation of the VM language’s goto and if-goto

commands.

m Fibonacci: computes and stores in memory the first n elements of the Fibo-

nacci series. This typical array manipulation program provides a more challenging

test of the VM’s branching commands.

Test Programs for Function Calling Commands

m SimpleFunction: performs a simple calculation and returns the result. This

program provides a basic test of the implementation of the function and return

commands.

m FibonacciElement: This program provides a full test of the implementation

of the VM’s function calling commands, the bootstrap section, and most of the other

VM commands.

The program directory consists of two .vm files:

� Main.vm contains one function called fibonacci. This recursive function returns

the n-th element of the Fibonacci series;

� Sys.vm contains one function called init. This function calls the Main.fibonacci

function with n ¼ 4, then loops infinitely.

Since the overall program consists of two .vm files, the entire directory must be

compiled in order to produce a single FibonacciElement.asm file. (compiling each

.vm file separately will yield two separate .asm files, which is not desired here).

m StaticsTest: A full test of the VM implementation’s handling of static vari-

ables. Consists of two .vm files, each representing the compilation of a stand-alone

class file, plus a Sys.vm file. The entire directory should be compiled in order to

produce a single StaticsTest.asm file.

(Recall that according to the VM Specification, the bootstrap code generated by the

VM implementation must include a call to the Sys.init function).

Tips

Initialization In order for any translated VM program to start running, it must in-

clude a preamble startup code that forces the VM implementation to start executing

171 Virtual Machine II: Program Control

it on the host platform. In addition, in order for any VM code to operate properly,

the VM implementation must store the base addresses of the virtual segments in

selected locations in the host RAM. The first three test programs in this project

assume that the startup code was not yet implemented and include test scripts that

effect the necessary initializations ‘‘manually.’’ The last two programs assume that

the startup code is already part of the VM implementation.

Testing/Debugging For each one of the five test programs, follow these steps:

1. Run the program on the supplied VM emulator, using the XxxVME.tst test

script, to get acquainted with the intended program’s behavior.

2. Use your partial translator to translate the .vm file(s), yielding a single .asm text

file that contains a translated program written in the Hack assembly language.

3. Inspect the translated .asm program. If there are visible syntax (or any other)

errors, debug and fix your translator.

4. Use the supplied .tst and .cmp files to run your translated .asm program on

the CPU emulator. If there are run-time errors, debug and fix your translator.

Note: The supplied test programs were carefully planned to unit-test the specific

features of each stage in your VM implementation. Therefore, it’s important to im-

plement your translator in the proposed order and to test it using the appropriate test

programs at each stage. Implementing a later stage before an early one may cause

the test programs to fail.

Tools Same as in Project 7.

172 Chapter 8

